References

(1)
Henkel, J.; Maurer, S. M. The Economics of Synthetic Biology. Molecular Systems Biology 2007, 3 (1), 117.
(2)
Appleton, E.; Densmore, D.; Madsen, C.; Roehner, N. Needs and Opportunities in Bio-Design Automation: Four Areas for Focus. Current Opinion in Chemical Biology 2017, 40, 111–118.
(3)
Appleton, E.; Madsen, C.; Roehner, N.; Densmore, D. Design Automation in Synthetic Biology. Cold Spring Harbor perspectives in biology 2017, 9 (4), a023978.
(4)
Torres-Acosta, M. A.; Lye, G. J.; Dikicioglu, D. Automated Liquid-Handling Operations for Robust, Resilient, and Efficient Bio-Based Laboratory Practices. Biochemical Engineering Journal 2022, 188, 108713.
(5)
Yeoh, J. W.; Swainston, N.; Vegh, P.; Zulkower, V.; Carbonell, P.; Holowko, M. B.; Peddinti, G.; Poh, C. L. SynBiopython: An Open-Source Software Library for Synthetic Biology, 2021.
(6)
Rand, K. D.; Grytten, I.; Pavlović, M.; Kanduri, C.; Sandve, G. K. BioNumPy: Array Programming for Biology. Nature Methods 2024, 1–2.
(7)
Kwon, K. K.; Lee, J.; Kim, H.; Lee, D.-H.; Lee, S.-G. Advancing High-Throughput Screening Systems for Synthetic Biology and Biofoundry. Current Opinion in Systems Biology 2023, 100487.
(8)
Sogi, G. Research Waste. Contemporary Clinical Dentistry, 2023, 14, 179.
(9)
Kwok, R. How to Pick an Electronic Laboratory Notebook. Nature 2018, 560 (7717), 269–270. https://doi.org/10.1038/d41586-018-05895-3.
(10)
(11)
Eyers, D.; Stevens, S.; Turner, A.; Cohen, J. Switch to an Electronic Lab Notebook? Pros and Cons, 2020. https://github.com/ImperialCollegeLondon/2020-07-13-Containers-Online/tree/gh-pages?tab=readme-ov-file.
(12)
Leahy, D.; Thorpe, C. Zero Trust Container Architecture (ZTCA). International Conference on Cyber Warfare and Security 2022, 17 (1), 111–120. https://doi.org/10.34190/iccws.17.1.35.
(13)
Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nature methods 2022, 19 (6), 679–682.
(14)
Wong, B. Visualizing Biological Data. Nat Methods 2012, 9 (12), 1131–1131.
(15)
Verschaffelt, P.; Collier, J.; Botzki, A.; Martens, L.; Dawyndt, P.; Mesuere, B. Unipept Visualizations: An Interactive Visualization Library for Biological Data. Bioinformatics 2022, 38 (2), 562–563.
(16)
Kerren, A.; Kucher, K.; Li, Y.-F.; Schreiber, F. BioVis Explorer: A Visual Guide for Biological Data Visualization Techniques. PLoS One 2017, 12 (11), e0187341.
(17)
Keller, M. Interactive Visualization of Biological Data on the Web, 2020. https://github.com/keller-mark/awesome-biological-visualizations.
(18)
White, S.; Quinn, J.; Enzor, J.; Staats, J.; Mosier, S. M.; Almarode, J.; Denny, T. N.; Weinhold, K. J.; Ferrari, G.; Chan, C. FlowKit: A Python Toolkit for Integrated Manual and Automated Cytometry Analysis Workflows. Frontiers in immunology 2021, 12, 768541.
(19)
Castillo-Hair, S. M.; Sexton, J. T.; Landry, B. P.; Olson, E. J.; Igoshin, O. A.; Tabor, J. J. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units. ACS synthetic biology 2016, 5 (7), 774–780.
(20)
Myers, C. J.; Beal, J.; Gorochowski, T. E.; Kuwahara, H.; Madsen, C.; McLaughlin, J. A.; Mısırlı, G.; Nguyen, T.; Oberortner, E.; Samineni, M.; others. A Standard-Enabled Workflow for Synthetic Biology. Biochemical Society Transactions 2017, 45 (3), 793–803.
(21)
Wenzel, T. Open Hardware: From DIY Trend to Global Transformation in Access to Laboratory Equipment. PLoS Biology 2023, 21 (1), e3001931.
(22)
Kouba, P.; Kohout, P.; Haddadi, F.; Bushuiev, A.; Samusevich, R.; Sedlar, J.; Damborsky, J.; Pluskal, T.; Sivic, J.; Mazurenko, S. Machine Learning-Guided Protein Engineering. ACS catalysis 2023, 13 (21), 13863–13895.
(23)
Kazlauskas, R. J.; Bornscheuer, U. T. Finding Better Protein Engineering Strategies. Nature chemical biology 2009, 5 (8), 526–529.
(24)
Listgarten, J. The Perpetual Motion Machine of AI-Generated Data and the Distraction of ChatGPT as a “Scientist.” Nature Biotechnology 2024, 42 (3), 371–373.
(25)
Slusarczyk, A. L.; Lin, A.; Weiss, R. Foundations for the Design and Implementation of Synthetic Genetic Circuits. Nature Reviews Genetics 2012, 13 (6), 406–420.
(26)
Kaczmarek, J. A.; Prather, K. L. Effective Use of Biosensors for High-Throughput Library Screening for Metabolite Production. Journal of Industrial Microbiology and Biotechnology 2021, 48 (9-10), kuab049.
(27)
Yokobayashi, Y.; Weiss, R.; Arnold, F. H. Directed Evolution of a Genetic Circuit. Proceedings of the National Academy of Sciences 2002, 99 (26), 16587–16591.
(28)
Wang, G.; Jia, W.; Chen, N.; Zhang, K.; Wang, L.; Lv, P.; He, R.; Wang, M.; Zhang, D. A GFP-Fusion Coupling FACS Platform for Advancing the Metabolic Engineering of Filamentous Fungi. Biotechnology for biofuels 2018, 11, 1–12.
(29)
Yeom, S.-J.; Kim, M.; Kwon, K. K.; Fu, Y.; Rha, E.; Park, S.-H.; Lee, H.; Kim, H.; Lee, D.-H.; Kim, D.-M.; others. A Synthetic Microbial Biosensor for High-Throughput Screening of Lactam Biocatalysts. Nature Communications 2018, 9 (1), 5053.
(30)
Choi, S.-L.; Rha, E.; Lee, S. J.; Kim, H.; Kwon, K.; Jeong, Y.-S.; Rhee, Y. H.; Song, J. J.; Kim, H.-S.; Lee, S.-G. Toward a Generalized and High-Throughput Enzyme Screening System Based on Artificial Genetic Circuits. ACS synthetic biology 2014, 3 (3), 163–171.
(31)
Kurczab, R.; Smusz, S.; Bojarski, A. J. The Influence of Negative Training Set Size on Machine Learning-Based Virtual Screening. Journal of cheminformatics 2014, 6, 1–9.
(32)
Maloney, M. P.; Coley, C. W.; Genheden, S.; Carson, N.; Helquist, P.; Norrby, P.-O.; Wiest, O. Negative Data in Data Sets for Machine Learning Training. Organic Letters, 2023, 25, 2945–2947.
(33)
Park, K.-H.; Kim, S.; Lee, S.-J.; Cho, J.-E.; Patil, V. V.; Dumbrepatil, A. B.; Song, H.-N.; Ahn, W.-C.; Joo, C.; Lee, S.-G.; others. Tetrameric Architecture of an Active Phenol-Bound Form of the AAA+ Transcriptional Regulator DmpR. Nature communications 2020, 11 (1), 2728.
(34)
Gupta, S.; Saxena, M.; Saini, N.; Mahmooduzzafar; Kumar, R.; Kumar, A. An Effective Strategy for a Whole-Cell Biosensor Based on Putative Effector Interaction Site of the Regulatory DmpR Protein. 2012.
(35)
Kim, H.; Seong, W.; Rha, E.; Lee, H.; Kim, S. K.; Kwon, K. K.; Park, K.-H.; Lee, D.-H.; Lee, S.-G. Machine Learning Linked Evolutionary Biosensor Array for Highly Sensitive and Specific Molecular Identification. Biosensors and Bioelectronics 2020, 170, 112670.
(36)
Pavel, H.; Forsman, M.; Shingler, V. An Aromatic Effector Specificity Mutant of the Transcriptional Regulator DmpR Overcomes the Growth Constraints of Pseudomonas Sp. Strain CF600 on Para-Substituted Methylphenols. Journal of bacteriology 1994, 176 (24), 7550–7557.
(37)
Hecko, S.; Schiefer, A.; Badenhorst, C. P.; Fink, M. J.; Mihovilovic, M. D.; Bornscheuer, U. T.; Rudroff, F. Enlightening the Path to Protein Engineering: Chemoselective Turn-on Probes for High-Throughput Screening of Enzymatic Activity. Chemical Reviews 2023, 123 (6), 2832–2901.
(38)
Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34 (18), 3094–3100.
(39)
Danecek, P.; Bonfield, J. K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M. O.; Whitwham, A.; Keane, T.; McCarthy, S. A.; Davies, R. M.; others. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10 (2), giab008.
(40)
Quinlan, A. R.; Hall, I. M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics 2010, 26 (6), 841–842.
(41)
Thorvaldsdóttir, H.; Robinson, J. T.; Mesirov, J. P. Integrative Genomics Viewer (IGV): High-Performance Genomics Data Visualization and Exploration. Briefings in bioinformatics 2013, 14 (2), 178–192.
(42)
Merkel, D.; others. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux j 2014, 239 (2), 2.
(43)
Technologies, O. N. 2024. https://nanoporetech.com/accuracy.
(44)
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žı́dek, A.; Potapenko, A.; others. Highly Accurate Protein Structure Prediction with AlphaFold. nature 2021, 596 (7873), 583–589.
(45)
Hodgman, C. E.; Jewett, M. C. Cell-Free Synthetic Biology: Thinking Outside the Cell. Metabolic engineering 2012, 14 (3), 261–269.
(46)
King, R. D.; Whelan, K. E.; Jones, F. M.; Reiser, P. G.; Bryant, C. H.; Muggleton, S. H.; Kell, D. B.; Oliver, S. G. Functional Genomic Hypothesis Generation and Experimentation by a Robot Scientist. Nature 2004, 427 (6971), 247–252.
(47)
Köpke, M.; Simpson, S. D. Pollution to Products: Recycling of ‘Above Ground’carbon by Gas Fermentation. Current Opinion in Biotechnology 2020, 65, 180–189.
(48)
King, R. D.; Rowland, J.; Oliver, S. G.; Young, M.; Aubrey, W.; Byrne, E.; Liakata, M.; Markham, M.; Pir, P.; Soldatova, L. N.; others. The Automation of Science. Science 2009, 324 (5923), 85–89.
(49)
Vögeli, B.; Schulz, L.; Garg, S.; Tarasava, K.; Clomburg, J. M.; Lee, S. H.; Gonnot, A.; Moully, E. H.; Kimmel, B. R.; Tran, L.; others. Cell-Free Prototyping Enables Implementation of Optimized Reverse β-Oxidation Pathways in Heterotrophic and Autotrophic Bacteria. Nature communications 2022, 13 (1), 3058.
(50)
Kim, K. J.; Lee, S.-J.; Kim, D.-M. The Use of Cell-Free Protein Synthesis to Push the Boundaries of Synthetic Biology. Biotechnology and Bioprocess Engineering 2023, 28 (6), 922–928.
(51)
Kelly, J. Ginkgo Bioworks Launches Ginkgo Enzyme Services, Enabling Applications Across Pharmaceuticals and Diagnostics, Food and Agriculture, and Beyond, 2022. https://www.prnewswire.com/news-releases/ginkgo-bioworks-launches-ginkgo-enzyme-services-enabling-applications-across-pharmaceuticals-and-diagnostics-food-and-agriculture-and-beyond-301697912.html.
(52)
(53)
Müller, K. M.; Arndt, K. M. Standardization in Synthetic Biology. Synthetic gene networks: methods and protocols 2012, 23–43.
(54)
Jainarayanan, A. K.; Galanis, A.; Sreejith, A.; Suresh, S.; Nakara, A. M.; Kundlatsch, G. E.; Rubio-Sánchez, R. iGEM Comes of Age: Trends in Its Research Output. Nature Biotechnology 2021, 39 (12), 1599–1601.
(55)
Galdzicki, M.; Clancy, K. P.; Oberortner, E.; Pocock, M.; Quinn, J. Y.; Rodriguez, C. A.; Roehner, N.; Wilson, M. L.; Adam, L.; Anderson, J. C.; others. The Synthetic Biology Open Language (SBOL) Provides a Community Standard for Communicating Designs in Synthetic Biology. Nature biotechnology 2014, 32 (6), 545–550.
(56)
Garner, K. L. Principles of Synthetic Biology. Essays in biochemistry 2021, 65 (5), 791–811.
(57)
Pei, L.; Garfinkel, M.; Schmidt, M. Bottlenecks and Opportunities for Synthetic Biology Biosafety Standards. Nature communications 2022, 13 (1), 2175.
(58)
Lux, M. W.; Strychalski, E. A.; Vora, G. J. Advancing Reproducibility Can Ease the “Hard Truths” of Synthetic Biology. Synthetic Biology 2023, 8 (1), ysad014.
(59)
Endy, D. Foundations for Engineering Biology. Nature 2005, 438 (7067), 449–453.
(60)
Purnick, P. E.; Weiss, R. The Second Wave of Synthetic Biology: From Modules to Systems. Nature reviews Molecular cell biology 2009, 10 (6), 410–422.
(61)
Bultelle, M.; Casas, A.; Kitney, R. Engineering Biology and Automation–Replicability as a Design Principle. Engineering Biology 2024.
(62)
Andrianantoandro, E.; Basu, S.; Karig, D. K.; Weiss, R. Synthetic Biology: New Engineering Rules for an Emerging Discipline. Molecular systems biology 2006, 2 (1), 2006–0028.
(63)
Kim, K. H.; Chandran, D.; Sauro, H. M. Toward Modularity in Synthetic Biology: Design Patterns and Fan-Out. Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology 2011, 117–138.
(64)
Mózsik, L.; Pohl, C.; Meyer, V.; Bovenberg, R. A.; Nygård, Y.; Driessen, A. J. Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synthetic Biology 2021, 10 (11), 2850–2861.
(65)
Sarand, I.; Skärfstad, E.; Forsman, M.; Romantschuk, M.; Shingler, V. Role of the DmpR-Mediated Regulatory Circuit in Bacterial Biodegradation Properties in Methylphenol-Amended Soils. Applied and environmental microbiology 2001, 67 (1), 162–171.
(66)
Madani, A.; McCann, B.; Naik, N.; Keskar, N. S.; Anand, N.; Eguchi, R. R.; Huang, P.-S.; Socher, R. Progen: Language Modeling for Protein Generation. arXiv preprint arXiv:2004.03497 2020.
(67)
Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A Universal Deep-Learning Model of Protein Sequence and Function. Bioinformatics 2022, 38 (8), 2102–2110.
(68)
Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C. L.; Ma, J.; Fergus, R. Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences. PNAS 2019. https://doi.org/10.1101/622803.
(69)
Rao, R. M.; Meier, J.; Sercu, T.; Ovchinnikov, S.; Rives, A. Transformer Protein Language Models Are Unsupervised Structure Learners. bioRxiv 2020. https://doi.org/10.1101/2020.12.15.422761.
(70)
Rao, R.; Liu, J.; Verkuil, R.; Meier, J.; Canny, J. F.; Abbeel, P.; Sercu, T.; Rives, A. MSA Transformer. bioRxiv 2021. https://doi.org/10.1101/2021.02.12.430858.
(71)
Meier, J.; Rao, R.; Verkuil, R.; Liu, J.; Sercu, T.; Rives, A. Language Models Enable Zero-Shot Prediction of the Effects of Mutations on Protein Function. bioRxiv 2021. https://doi.org/10.1101/2021.07.09.450648.
(72)
Hsu, C.; Verkuil, R.; Liu, J.; Lin, Z.; Hie, B.; Sercu, T.; Lerer, A.; Rives, A. Learning Inverse Folding from Millions of Predicted Structures. ICML 2022. https://doi.org/10.1101/2022.04.10.487779.
(73)
Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Santos Costa, A. dos; Fazel-Zarandi, M.; Sercu, T.; Candido, S.; others. Language Models of Protein Sequences at the Scale of Evolution Enable Accurate Structure Prediction. bioRxiv 2022.
(74)
Ferruz, N.; Höcker, B. Controllable Protein Design with Language Models. Nature Machine Intelligence 2022, 4 (6), 521–532.
(75)
Venter, J. C.; Glass, J. I.; Hutchison, C. A.; Vashee, S. Synthetic Chromosomes, Genomes, Viruses, and Cells. Cell 2022, 185 (15), 2708–2724.
(76)
Hutchison III, C. A.; Chuang, R.-Y.; Noskov, V. N.; Assad-Garcia, N.; Deerinck, T. J.; Ellisman, M. H.; Gill, J.; Kannan, K.; Karas, B. J.; Ma, L.; others. Design and Synthesis of a Minimal Bacterial Genome. Science 2016, 351 (6280), aad6253.
(77)
Rapp, J. T.; Bremer, B. J.; Romero, P. A. Self-Driving Laboratories to Autonomously Navigate the Protein Fitness Landscape. Nature chemical engineering 2024, 1 (1), 97–107.
(78)
Hughes, R. A.; Ellington, A. D. Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. Cold Spring Harbor perspectives in biology 2017, 9 (1), a023812.
(79)
Hendling, M.; Barišić, I. In-Silico Design of DNA Oligonucleotides: Challenges and Approaches. Computational and Structural Biotechnology Journal 2019, 17, 1056–1065.
(80)
Richardson, S. M.; Wheelan, S. J.; Yarrington, R. M.; Boeke, J. D. GeneDesign: Rapid, Automated Design of Multikilobase Synthetic Genes. Genome research 2006, 16 (4), 550–556.
(81)
Richardson, S. M.; Nunley, P. W.; Yarrington, R. M.; Boeke, J. D.; Bader, J. S. GeneDesign 3.0 Is an Updated Synthetic Biology Toolkit. Nucleic Acids Research 2010, 38 (8), 2603–2606.
(82)
Villalobos, A.; Ness, J. E.; Gustafsson, C.; Minshull, J.; Govindarajan, S. Gene Designer: A Synthetic Biology Tool for Constructing Artificial DNA Segments. BMC bioinformatics 2006, 7, 1–8.
(83)
Hoover, D. M.; Lubkowski, J. DNAWorks: An Automated Method for Designing Oligonucleotides for PCR-Based Gene Synthesis. Nucleic acids research 2002, 30 (10), e43–e43.
(84)
SantaLucia Jr, J.; Hicks, D. The Thermodynamics of DNA Structural Motifs. Annu. Rev. Biophys. Biomol. Struct. 2004, 33 (1), 415–440.
(85)
Panjkovich, A.; Melo, F. Comparison of Different Melting Temperature Calculation Methods for Short DNA Sequences. Bioinformatics 2005, 21 (6), 711–722.